CONTROL DATA

“
CONTROL DATA® |

CYBER 70 MODELS 72,73,74
COMPUTER SYSTEMS

“
INSTRUCTION DESCRIPTIONS
REFERENCE MANUAL VOLUME 2

INSTRUCTION INDEX
INSTRUCTION INDEX

CENTRAL PROCESSOR

00XXX Error exit to MA or Program Stop 3-3 724jK Set Xi to (Xj) + K
7313k Set Xi to (Xj) + (Bk)
0100K Return jump to K 3-3 T4ijk Set Xi to (Aj) + (Bk)
011jK Read extended core storage 3-6 75ijk Set Xi to (Aj) - (Bk)
012jK Write extended core storage 3-6 76ijk Set Xi to (B)) + (Bk)
018;K Central exchange jump 3-8 71ijk Set Xi to (Bj) - (Bk)
02iXk Jump to (Bi) + K 3-4 PERIPHERAL PROCESSORS
030jK Jump to K if (Xj) = 0 3-4 0000 Pass
031K Jump to K M (X)) £ 0 3-4 01dm Long jump tom + (d)
032;K Jump to K if {X]) positive 3-4 02dm Return jump to m + (d)
033;K Jump to K if (X)) negative 3-4 03d Unconditional jump d
034K Jump to K if (Xj) in range 3-4 04d Zero jump d
035K Jump to K if (Xj) out of range 3-4 05d Nonzero jump d
036;K Jump to K if (Xj) definite 3-4 06d Plus jump d
037jK Jump to K if (Xj) indefinite 3-4 07d Minus jump d
04ijK Jump to K if (Bi) = (Bj) 3-5 10d Shift d
05ijK Jump to K if (Bi) # (Bf) 3-5 11d Logical difference d
06ijK Jump to K if (Bi) > (Bj) 3-5 12d Logical product d
074K Jump to K if (Bi) < (Bj 3-5 13d Selective clear d
14d Load d
104 Transmit (Xj) to Xi 3-7 15d Load complement d
11ijk Logical product of (Xji) and (Xk) to Xi 3-7 16d Add d
12ijk Logical sum of (Xj) and Xk) to Xi 3-7 174 Subtract d
13i3k Logical difference of (X)) and (Xk) to Xi 3-8
14i0k Transmit complement of (Xk) to Xi 3-8 20dm Load dm
15ijk Logical product of (Xj) and comp (Xk) to Xi 3-8 21dm Add dm
181jk Logical sum (Xj) and comp (Xk) to Xi 3-9 22dm Logical product dm
17ijk Logical difference of (Xj) and comp (Xk) to Xi 3-9 giggx {;ogical difference dm
B ass
20ijk Left shift (Xi) by jk 3-9 2500 Pass
21ijk Right shift (Xj) by jk 3-10 280X Exchange jump
22ijk Left shift (Xk) nominally (Bj) places to Xi 3-10 261X Monitor exchange jump
. 2343k Right shift {Xk) nominally (Bj) places to Xi 3-10 262X Monitor exchange jump to MA
24ijk Normalize (Xk) to Xi and Bj 3-11 27X Read program address
25ijk Round and normalize (Xk) to Xi and Bj 3-11
26ijk Unpack (Xk) to Xi and Bj 3-12 30d Load (d)
27ijk Pack Xi from (Xk) and Bj) 3-12 31d Add (d)
) 32d Subtract (d)
30ijk Floating sum of (Xj) and Xk) to Xi 3-13 33d Logical difference (d)
31ijk Floating difference of (Xj) and (Xk) to Xi 3-14 34d Store d
32ijk Floating DP sum of (Xj) and (Xk) to Xi 3-14 35d Replace add (d)
33ijk Floating DP difference of (Xj) and (Xk) to Xi 3-14 36d Replace add one (d)
34ijk Round floating sum of (Xj) and (Xk) to Xi 3-15 37d Replace subtract one (d)
36ijk Round floating differsace of (Xj) and (Xk) to Xi 3-15
38ijk Integer sum of (Xj) and (Xk) to Xi 3-19 40d Load ((d))
37ijk Integer difference of (Xj) and (Xk) to Xi 3-19 41d Add ((d))
. . 42d Subtract ((d))
40ijk Floating product of (Xj) and (Xk) to Xi 3-18 43d Logical difference ((d))
4143k Round floating product of (Xj) and (Xk) to Xi 3-17 44d Store ((d))
42ijk Floating DP product of (Xj) and {Xk) to Xi 3-17 45d Replace add ((d))
43ijk Form mask in Xi, jk bits 3-13 46d Replace add one ((d))
4dijk Floating divide (Xj) by (Xk) to Xi 3-18 47d Replace subtract one ((d))
45ijk Round floating divide (Xj) by (Xk) to Xi 3-18
48000 No operation (pass) 3-20 50dm Load (m + (d))
4643k Move indirect 3-21 51dm Add {m + (d))
485jk Move direct 3-22 §2dm Subtract (m + (d))
468k Compare collated 3-22 53dm Logical difference (m + (d))
46873k Compare uncollated 3-23 54dm Store (m + (d))
47iXk Count the numbers or "1's" in (Xk) to Xi 3-19 56dm Replace add {m + (d))
56dm Replace add one (m + (d))
501jK Set Aito (Aj) + K 3-24 57dm Replace subtract one (m + (d))
51ijK Set Ai to (Bj) + K 3-24 .
52ijK Set Ai to (Xj) + K 3-24 60d Central read from (A) to d
53ijk Set Ai to (Xj) + (Bk) 3-24 61dm Central read (d) words to {(A) from m
54ijk Set Ai to (Aj) + (Bk) 3-24 62d Central write to (A) from d
8513k Set Ai to (Aj) - (Bk) 3-24 63dm Central write (d) words to (A) from m
58ijk Set Ai to (Bj) + (Bk) 3-24 64dm Jump to m if channel d active
57ijk Set Ai to (Bj) - (Bk) 3-24 65dm Jump to m if channel d ipactive
66dm Jump to m if channel d full
80ijK Set Bi to (Aj) + K 3-25 67dm Jump to m if channel d empty
81ijK Set Bi to (Bj) + K 3-25
62ijK Set Bi to (X)) + K 3-25 70d input to A from channel d
83ijk Set Bi to (Xj) + (Bk) . 3-25 71dm Input (A) words to m from channel d
Bdijk Set Bi to (Aj) + (Bk) 3-25 72d Output from A on channel d
85ijk Set Bi to (Aj) - (Bk) 3-25 73dm Output (A) words from m on channel d
86ijk Set Bi to (Bj) + (Bk) 3-25 74d Activate chananel d
67ijk Set Bi to {Bj) ~ (Bk) 3-25 : 75d Disconnect channel d
T0i}K Set Xi to(Aj) + K 3-26 76d Function (A) on channel d

71ijK Set Xito (Bj)+ K 3-286 T7dm Function m on channel d

U
oMo ®

c::uwwwu
gNNNNN

1L
NHBHO LT O

h#hbbhh»&?? fff»h»»h L S N W
Pt ot O - -3
BRee®®

REVISION RECORD

REVISION | DESCRIPTION
A Manual Released.
(2-22-71)
B Manual reviged, editorial corrections.
(3-1-71)
C Revise move, compare instructions and integer multiply instruction. ECO 27834.
(7-71)
D Manual revised; includes Engineering Change 31589, Pages iii,v, 3-3,3-17, 3-12, 3-13, 3-20, 3-21,
(4-27-172) 3-22.3-23,.4-14,4-15 are revised, Pages 4-25,4-26,4-27,4-28, 4-29, and 4-30 are added.
B Manual revised; includes Engineering Change Order 30639. Page 3-17 is revised.
(3-13-73)
F Manual revised; includes Engineering Change Order 33110, Inside Front Cover and pages 3-1,

(3-13-73) 3-21, 4-21, 4-22, 4-24 are revised.

Publication No.
60347300

©® 1971, 1972, 1973
by Control Data Corporation

b"h_a(

PREFACE

M.

The CONTROL DATA® CYBER 70 series reference manuals are published in a series of

volumes. This manual is volume 2 of the series.

The detailed system description is in volume 1 of the series. Publication number 60347000
covers Model 72 systems, 60347200 covers Model 73 systems, and 60347400 covers Model

74 systems.

Information about the ECS (Extended Core Storage) is in volume 3 of the series, publication
number 60347100.

The publications listed are available through the nearest Control Data Corporation sales

office.

60347300 D iii

CONTENTS

\

3. CENTRAL PROCESSOR INSTRUCTIONS

Instruction Formats 3-1
Monitor, Stop 3-3
Branch 3-3
Extended Core Storage
Communication 3-5
Central Exchange Jump 3-6
Logical 3-7
Shift 3-9
Floating Point Arithmetic 3-13
Fixed Point Arithmetic 3-19
Pass 3-20
Move, Compare Data Handling 3-20
Increment 3-24

4. PERIPHERAL PROCESSOR

INSTRUCTIONS
Instruction Formats 4-1
Address Modes 4-1

No Address Mode
Direct Address Mode
Indirect Address Mode

Description of Instructions

No Operation
Branch

Shift

Logical

Data Transmission
Arithmetic

Central Processor and Central
Memory Communications

Replace
Input/Output
Console Programming

FIGURES

4-1 Console Output Function Codes 4-27 4-3
4-2 Coordinate Data Word 4-27 4-4

TABLES

3-1 Central Processor Instruction 4-2

Designators 3-2
4-1 Addressing Modes for Peripheral 4-3
Processor Instructions 43 4-4

60347300 D

Character Data Word

Receive and Display Program
Flow Chart:

Peripheral Processor
Instruction Designators

Keyboard Character Codes
Display Character Codes

4-1
4-2
4-2
4-3
4-4
4-5
4-7
4-7
4-9
4-12

4-14
4-17
4-20
4-25

4-27

4-29

4-4
4-25

CENTRAL PROCESSOR INSTRUCTIONS 3.
“
INSTRUCTION FORMATS

This section describes the Central Processor instructions. The CPU instructions tend to
fall into two categories: those causing computation and those causing storage references or
program branching. The instructions causing only computation are generally executed in a
fixed amount of time after they have been issued. Instructions involving storage references
for operands or program branching require variable amounts of time and cannot be precisely

timed.

Careful coding of critical program loops can produce substantial improvements in execution
time. Detailed timing information is provided in the applicable CYBER 70 series System

Description Reference Manual, which is volume 1 of the series.

Preceding the description of each instruction is the octal code, the instruction name, the
number of bits in the instruction, and a diagram showing the instruction format, Slanted
parallel lines within a format diagram indicate unused bit positions. Table 3-1 defines the
Central Processor instruction designators.

60347300 F 3-1

TABLE 3-1. CENTRAL PROCESSOR INSTRUCTION DESIGNATORS
Designator Use

A Specifies one of eight 18-bit address registers.

B Specifies one of eight 18-bit index registers; B0 is fixed and
equal to zero.

C1 The offset (character address) of the first character in the
first word of the source field.

C2 The character address of the first character in the first word
of the result field.

fm A 6-bit instruction code,

i A 3-bit code specifying one of eight designated registers
(e.g., Ai).

J A 3-bit code specifying one of eight designated registers
(e.g., Bj).

jk A 6-bit constant, indicating the number of shifts to be taken.

k A 3-bit code specifying one of eight designated registers
(e.g., Bk).

K An 18-bit constant, used as an operand or as a branch
destination (address).

K1 An 18-bit address indicating the memory location of the first
(left-most) character of the source field.

K2 An 18-bit address indicating the memory location of the first
(left-most) character of the result field.

LL The lower 4 bits of the field length (character count) of a move
or compare instruction. Used with LU to specify field length.

LU The upper 9 bits of the field length (character count) for indirect

move instruction or the upper 3 bits for direct instructions.

Used with LL to specify field length.

X Specifies one of eight 60-bit operand registers.

3-2

60347300 C

MONITOR, STOP

00 Error Exit to MA or Program Stop : (15 Bits)

| [zzzzzizzzzzzzz7n)

24 23 o]

A panel switch labeled CEJ/MEJ determines which of the functions this instruction can performJ
In the DISABLE position, the system has no central exchange (or monitor exchange) jump
capability so the central processor stops. In the ENABLE position, the system has the jump
capability so the 00 causes an exchange jump to the monitor address (MA) in the exchange

Jump package if the monitor flag is clear. It then sets the monitor flag, If the flag is al-
ready set, this instruction stops the central processor.
BRANCH
010 Return Jump to K (30 Bits)
= A «]
29 2120 1817 [¢]

The instruction stores an 04 unconditional jump and the current address plus one [(P) +1]
in the upper half of address K, then branches to K + 1 for the next instruction. Note that

this instruction is always out of the instruction stack, thus voiding the stack.

The octal word at K after the instruction appears as follows:

UNCONDITIONAL

JUMP P+
—N— ’ A— \
k| o4 oo X XXX XX [oo0 J/ o]
59 - 30 29 0
8i = Bj

A jump to address K at the end of the branch routine returns the program to the original

sequence.

60347300 D 3-3

02 Jump to (Bi)+ K , (30 Bits)

Lm [2] X]

29 24 23 21201817 o]

This instruction adds the contents of increment register Bi to K and branches to the address
specified by the sum. The branch address is K when i = 0. Addition is performed modulo

218 4.

Note that this instruction is always out of the instruction stack, thus voiding the stack. For
an unindexed, unconditional jump, the 04 instruction with i = j = 0 is a better choice. Thus,
if this instruction is contained in a tight loop, the instruction at K can be obtained from the

stack, if possible.

030 Jump to K if (Xj)=0 (30 Bits)

031 Jump to K if (Xj) # 0 (30 Bits)

032 Jump to K if (Xj) = plus (positive) (30 Bits)

033 Jump to K if (Xj) = negative (30 Bits) —
034 Jump to K if (Xj) is in range (30 Bits)

035 Jump to K if (Xj) is out of range (30 Bits)

036 Jump to K if (Xj) is definite (30 Bits)

037 Jump to K if (Xj) is indefinite (30 Bits)

| fmi [] K J

29 21201817

These instructions branch to K when the 60-bit word in operand register Xj meets the
condition specified by the i digit. The instruction allows zero, sign, and indefinite forms

tests for fixed or floating point words.

The following applies to tests made in this instruction group:

a) The 030 and 031 operations test the full 60-bit word in Xj. The words 000, .. 000

and 777, ..777 are treated as zero, All other words are non-zero.

b) The 032 and 033 operations examine only the sign bit (259) of Xj. If the sign bit
is zero, the word is positive; if the sign bit is one, the word is negative. Thus,

the sign test is valid for fixed point words or for coefficient in floating point words,

3.4 60347300 C

¢) The 034 and 035 operations examine the upper-order 12 bits of Xj. Both plus and

minus infinity are detected:
3777XX. .. XX and 4000XX...XX are out of range; all other words are in range.

d) The 036 and 037 operations examine the upper-order 12 bits of Xj. Both plus and
minus indefinite forms are detected:

1777XX. .. XX and 8000XX. .. XX are indefinite; all other words are definite.

04 Jump to K if (Bi)= (Bj) (30 Bits)
05 "~ Jump to K if (Bi) » (Bj) (30 Bits)
06 Jump to K if (Bi) = (Bj) (30 Bits)
07 Jump to K if (Bi) < (Bj) (30 Bits)

Lfm T[] K]

24 23 21201817 (o]

These instructions test an 18-bit word from register Bi against an 18-bit word from register
Bj (both words signed quantities) for the condition specified and branch to address K on a

successful test. All tests against zero (all zeros) can be made by setting Bj = BO.

The following rules apply in the tests made by these instructions:
a) Positive zero is recognized as unequal to negative zero, and

b) Positive zero is recognized as greater than negative zero, and

c) A positive number is recognized as greater than a negative number.

Note that the 06 and 07 instructions first perform a sign test on Bi and Bj and the Branch/
No Branch determination is based on the above rules. If Bi and Bj are of the same sign, a
subtract test is performed (in the Increment Unit) and the sign of the result (Bi-Bj) deter-

mines whether a Branch is made.

EXTENDED CORE STORAGE COMMUNICATION

This category of instructions provides the ability to communicate with Extended Core
Storage (ECS). This section describes Extended Core Storage instructions. A more detajled
description of the instructions can be found in the Extended Core Storage volume of the
Reference Manual (volume 3, Pub. No. 60347100).

60347300 C 3-5

These instructions must be located in the upper order position of the instruction word. If
they are not, any attempt at execution will cause an exit to RACM regardless of the error
mode bits. This will also happen if the instructions are used in a system that does not have
ECS.

011 Read Extended Core Storage (30 Bits)

Lt i] X |

59 5150 48 47 30

This instruction initiates a Read operation to transfer [(Bj) + K] 60-bit words from Extended
Core Storage to Central Memory. The initial Extended Core Storage address is [(X0) +

RAECS]; the initial Central Memory address is [(A0) + R'ACM]'

012 Write Extended Core Storage (30 Bits)

[mi T] K] —

59 5150 48 47 30

This instruction initiates a Write operation to transfer [(Bj) + K] 60-bit words from Central
Memory to Extended Core Storage. The initial Central Memory address is [(A0) + RA
the initial Extended Core Storage address is [(X0) + RA

CM]3
ECSL

CENTRAL EXCHANGE JUMP

013 Central Exchange Jump (60 Bits)

[mi | 3] K [wotuseo |

59 5150 4847 029 °
This instruction is enabled or disabled by a panel switch labeled CEJ/MEJ. If the switch is
at ENABLE position, this instruction unconditionally exchange jumps the Central Processor,
regardless of the state of the Monitor Flag bit. Instruction action differs, however, de-

pending on whether the Monitor Flag bit is set or clear. Operation is as follows:

a) Monitor Flag bit clear. The starting address for the exchange is taken from the
18-bit Monitor Address register. Note that this starting address is an absolute
address. During the exchange, the Monitor Flag bit is set.

3-8 60347300 C

b) Monitor Flag bit set, The starting address for the exchange is the 18-bit result
formed by adding K to the contents of register Bj. Note that this starting address
is an absolute address. During the exchange, the Monitor Flag bit is cleared.

If the CEJ/MEJ switch is at the DISABLE position, this instruction is illegal. P
is cleared, P+1 is stored at RA, and the central processor is stopped.

c) In dual central processor machines, when one CPU is in monitor mode, the other
CPU cannot jump and will wait until the first CPU's monitor flag is cleared.
LOGICAL

10 Transmit (Xj) to Xi (15 Bits)

L= [v T 5 77

9 9 8 6 5

This instruction transfers a 60-bit word from operand register Xj to operand register Xi,

11 Logical product of (Xj) and (Xk) to Xi (15 Bits)

L™ [& [7 T]

14 9 8 6 5 3 2 0

This instruction forms the logical product (AND function) of 60-bit words from operand
registers Xj and Xk and places the product in operand register Xi. Bits of register Xi are
set to ""1" when the corresponding bits of the Xj and Xk registers are ''1" as in the following

example:
(Xj) = 0101
(Xk) = 1100
Xi = 0100
12 Logical sum of (Xj} and (Xk) to Xi (15 Bits)

L m T « T 7 T «]

14 9 8 6 5 3 2 o]

This instruction forms the logical sum (inclusive OR) of 60-bit words from operand registers

Xj and Xk and places the sum in operand register Xi. Bits of register Xi are set to '"1" if
the corresponding bit of the Xj or Xk register is a "1" as in the following example:

(Xj) = o101
(Xk) = 1100
Xi = 1101

60347300 D 3-7

13 Logical difference of (Xj) and (Xk) to Xi (15 Bits)

L m T T 5 T %]

14 9 8 6 5 3 2 1Y

This instruction forms the logical difference (exclusive OR) of 60-bit words from operand
registers Xj and Xk and places the difference in operand register Xi. Bits of register Xi
are set to "'1" if the corresponding bits in the Xj and Xk registers are unlike as in the

following example:

(Xj) = 0101
(Xk) = 1100
Xi = 1001
14 Transmit the complement of (Xk) to Xi (15 Bits)

L= [« V7270 v]

14 9 8 6 5 3 2 o]

This instruction extracts the 60-bit word from operand register Xk, complements it, and

transmits this complemented quantity to operand register Xi.

15 Logical product of (Xj) and complement of (Xk) to Xi (15 Bits)

Lt [« 7 T]

14 9 8 6 5 3 2 o}

‘This instruction forms the logical product (AND function) of the 60-bit quantity from operand
register Xj and the complement of the §0-bit quantity from operand register Xk, and places
the result in operand register Xi. Thus, bits of Xi are set to "1" when the corresponding

bits of the Xj register and the complement of the Xk register are "1" as in the following

example:
(Xj) = o101
Complemented (Xk) = 0011
Xj = 0001

3-8 - 60347300 C

~— 16 Logical sum of (Xj) and complement of (Xk) to Xi (15 Bits)

fm I i l i I k]

14 9 8 6 5 3 2 (o]

This instruction forms the logical sum (inclusive OR) of the 60-bit quantity from operand
register Xj and the complement of the 60-bit word from operand register Xk, and places
the result in operand register Xi. Thus, bits of Xi are set to ""1" if the corresponding bit

of the Xj register or complement of the Xk register is a ''1" as in the following example:

(Xj) = o101
Complemented (Xk) = 0011
Xi = 0111
17 Logical difference of (Xj) and complement of (Xk) to Xi (15 Bits)

I I B

19 9 8 6 5 3 2 0

This instruction forms the logical difference (exclusive OR) of the quantity from operand

register Xj and the complement of the 60-bit word from operand register Xk, and places

"

the result in operand register Xi. Thus, bits of Xi are set to '"1" if the corresponding bits

of register Xj and the complement of register Xk are unlike as in the following example:

(Xj) = 0101
Complemented (Xk) = 0011
Xi = 0110
SHIFT
20 Left shift (Xi), jk places v (15 Bits)

fm I] ik |

14 9 8 6 5 0

This instruction shifts the 60-bit word in operand register Xi left circular Jk places. RBits

shifted off the left end of operand register Xi replace those from the right end.

The 6-bit shift count jk allows a complete circular shift of register Xi,

60347300 C 3-9

21 Arithmetic right shift (Xi), jk places (15 Bits)

[tm [] ik]

14 .9 8 6 5 (o]

This instruction shifts the 60-bit word in operand register Xi right jk places. The right-
most bits of Xi are discarded and the sign bit is extended.

22 Left shift (Xk) nominally (Bj) places to Xi (15 Bits)

L m [T 7 T]

4 9 8 6 5 3 2 0

This instruction shifts the 60-bit quantity from operand register Xk the number of places
specified by the quantity in increment register Bj and places the result in operand register Xi,

1) If Bj is positive (i.e., bit 17 of Bj = 0), the quantity from Xk is shifted left-
circular. (The low order six bits of Bj specify the shift count.)

2) If Bj is negative (i.e., bit 17 of Bj = 1), the quantity from Xk is shifted right
(end off with sign extention). (The one's complement of the low order eleven bits
of Bj specify the shift count.) If any of bits 26-210, after complementing, are
"1's", the shift is not performed and the result register Xi is cleared to all zeros.

23 Right shift (Xk) nominally (Bj) places to xi (15 Bits)

o T 5 T+]

t4 9 8 6 5 3 2 8]

This instruction shifts the 60-bit quantity from operand register Xk the number of places

specified by the quantity in increment register Bj and places the result in operand register Xi,

1) If Bj is positive (i.‘e. » bit 17 of Bj = 0), the quantity from register Xk is shifted
right (end-off with sign extension). (The low order eleven bits of Bj specify the
shift count.) If any of bits 26_,10 are "'1's", the shift is not performed and the
result register Xi is cleared to all zeros.

2) If Bj is negative (i.e., bit 17 of Bj = 1), the quantity from register Xk is shifted left
circular. (The complement of the lower order six bits of Bj specify the shift count.)

3-10 ' 60347300 C

24 Normalize (Xk) to Xi and Bj {15 Bits)

[w T T 7 17+

e 9 8 6 S 3 2]
This instruction normalizes the floating point quantity from operand register Xk and places
it in operand register Xi. The number of left shifts necessary to normalize the quantity is
entered in increment register Bj. A Normalize operation may cause underflow which will
clear Xi to all zeros regardless of the original sign of Xk. Normalizing either a plus or
minus zero coefficient sets the shift count (Bj) to 4810 and clears Xi to all zeros.

If Xk contains an infinite quantity (3777X...X or 4000X...X) or an indefinite quantity
(1777X..,X or 6000X...X), no shift takes place. The contents of Xk are copied into Xi and

Bj is set equal to zero. Optional error exits do occur,

25 Round and normalize (xk) to Xi and Bj (15 Bits)

o T 7 T 7 T]

4 9 8 6 5 3 2 0
This instruction performs the same operation as instruction 24 except that the quantity from
operand register Xk is rounded before it is normalized. Rounding is accomplished by placing
a ""1" round bit immediately to the right of the least significant coefficient bit. Normalizing
a zero coefficient places the round bit in bit 47 and reduces the exponent by 48. Note that the

same rules apply for underflow.

If Xk contains an infinite quantity (3777X...X or 4000X...X) or an indefinite quantity
(1777X...X or 8000X...X), no shift takes place. The contents of Xk are copied into Xi

and Bj is set equal to zero. Optional error exits do occur,

60347300 C 3-11

26 Unpack (Xk) to Xi and Bj - (15 8its)

TS S R N

4 9 8 6 5 3 2 o

This instruction unpacks the floating point quantity from operand register Xk and sends the
48-bit coefficient to operand register Xi and the 11-bit exponent to increment register Bj.
The exponent bias is removed during Unpack so that the quantity in Bj is the one's complement

representation of the true exponent.

The exponent and coefficient are sent to the low-order bits of the respective registers as
shown below:

SIGN_BIASED EXPONENT COEFFICIENT
PACKED QuaNTITY [] T [48 Xk
59 58 46 47 0
UNBIASED
EXPONENT
EXPONENT SIGN COEFFICIENT
EXTENDED SIGN EXTENDED
UNPACKED B j 1"5
i 109 0 59 48 47)
27 Pack Xi from (Xk) and (8j) (15 Bits)

L T 7 T 57 T]

14 9 8 6 5 3 2 0

This instruction packs a floating point number in operand register Xi. The coefficient of the
number is obtained from operand register Xk and the exponent from increment register Bj.

Bias is added to the exponent during the Pack operation. The instruction does not normalize
the coefficient.

Exponent and coefficient are obtained from the proper low-order bits of the respective
registers and packed as shown in the illustration for the Unpack (26) instruction. Thus, bits

48 to 58 of Xk and bits 11 to 17 of Bj are ignored. There is no test for overflow or underflow.

3-12 60347300 D

Note that if Xk is positive, the packed exponent occupying positions 48 to 58 of Xi is obtained
from bits 0 to 10 of Bj by complementing bit 10; if Xk is negative, bit 10 is not complemented
but bits 0 to 9 are.

43 Form mask in Xi, jk bits (15 Bits)

L™ [T w7

14 9 8 6 5 o}

This instruction forms a mask in operand register Xi. The 6-bit quantity jk defines the

number of "1's" in the mask as counted from the highest order bit in Xi.

The contents of operand register i = 0 when jk = 0.

FLOATING POINT ARITHMETIC

30 Floating sum of (Xj) and (Xk) to Xi (15 Bits)

[fm L o [i [x]
149 9 8 6 5 3 2 o]
This instruction forms the sum of the floating point quantities from operand registers Xj and

Xk and packs the result in operand register Xi. The packed result is the upper half of a

double precision sum.

At the start both arguments are unpacked, and the coefficient of the argument with the smaller
exponent is entered into the upper half of a 96-bit accumulator. The coefficient is shifted I
right by the difference of the exponents. The other coefficient is then added into the upper

half of the accumulator. If overflow occurs, the sum is right-shifted one place and the
exponent of the result increased by one. The upper half of the accumulator holds the
coefficient of the sum, which is not necessarily in normalized form. The exponent and

upper coefficient are then repacked in operand register Xi.

If both exponents are zero (20008) and no overflow occurs, the instruction causes an ordinary
integer addition. For treatment of special operands and/or indefinite forms, reler to the

programming information in volume 1.

60347300 D 3-13

31 Floating difference (Xj) and (Xk) to Xi ' (15 Bits)

[T T 7 T]
149 9 8 6 5 3 2 0
This instruction forms the difference of the floating point quantities from operand registers
Xj and Xk and packs the result in operand register Xi, Alignment and overflow operations
are gsimilar to the Floating Sum (30) instruction, and the difference is not necessarily

normalized. The packed result is the upper half of a double precision difference.

An ordinary integer subtraction is performed when the exponents are zero. For treatment
of special operands and/or indefinite forms, refer to the programming information in

volume 1,

32 Floating DP sum of (Xj) and (Xk) to Xi (15 Bits)

[T T T]

14 9 8 6 5 3 2 0

This instruction forms the sum of two floating point numbers as in the Floating Sum (30)
instruction, but packs the lower half of the double precision sum with an exponent 48 less
than the upper sum. For treatment of special operands and/or indefinite forms, refer to

the programming information in volume 1.

33 Floating DP ditference of (Xj) and (Xk) to Xi (15 Bits)

L m T T 7 T v

19 9 8 6 5 3 2

This instruction forms the difference of two floating point numbers as in the Floating
Difference (31) instruction, but packs the lower half of the double precision difference with
an exponent of 48 less than the upper sum. For treatment of special operands and/or

indefinite forms, refer to the programming information in volume 1.

3-14 60347300 C

S—

34 Round floating sum of (Xj) and (Xk) to Xi (15 Bits)

Lo T " T 3 T «]

14 9 8 6 5 3 2

This instruction forms the round sum of the floating point quantities from operand registers
Xj and Xk and packs the upper sum of the double precision result in operand register Xi, ’
The sum is formed in the same manner as the Floating Sum instruction but the operands

are rounded before the addition, as shown below, to produce a round sum.
1) A round bit is attached at the right end of both operands if:
a) both operands are normalized, or
b) the operands have unlike signs.

2) A round bit is attached at the right end of the operand with the larger exponent for
~all other cases.

3) Inthe event that the operands have equal exponents, a round bit is attached to the

coefficient for only one of the operands.

For treatment of special operands and/or indefinite forms, refer to the programming
information in volume 1.

35 Round floating difference of (Xj) and (Xk) to Xi (15 Bits)

T I R T

149 9 8 6 5 3 2 o]

This instruction forms the round difference of the floating point quantities from operand
registers Xj and Xk and packs the upper difference of the double precision result in operand
register Xi. The difference is formed in the same manner as the Floating Difference (31)
instruction but the operands are rounded before the subtraction, as shown below, to produce
a round difference.

1) A round bit is attached at the right end of both operands if:
a) both operands are normalized, or

b) the operands have like signs.

60347300 C 3-15

2) A round bit is attached at the right end of the operand with the larger exponent for

all other cases.

3) Inthe event that the operands have equal exponents, a round bit is attached to the

coefficient for only one of the operands.

For treatment of special operands and/or indefinite forms, refer to the programming

information in volume 1.

40 Floating product of (Xj) and (Xk) to Xi (15 Bits)

TN S S

14 9 8 6 5 3 2 o

This instruction multiplies two floating point quantities obtained from operand registers Xj
(multiplier) and Xk (multiplicand) and packs the upper product result in operand register Xi,

The two 48-bit coefficients are multiplied together to form a 96-bit product. The upper
48 bits of the product (bits 48-95) are then packed together with the resulting exponent. Note
that when using unnormalized quantities, the entire result could lie in the lower-order 48 bits

of the product; hence, this result would be lost when packing occurs.

The result is a normalized quantity only when both operands are normalized; the exponent

in this case is the sum of the exponents plus 47 (or 48).

The result is unnormalized when either or both operands are unnormalized; the exponent in
this case is the sum of the exponents plus 48. For treatment of special operands and/or

indefinite forms, refer to the programming information in volume 1.
This instruction is not meant for integer multiplication, however it can be used to indicate

overflow resulting from operands too large for integer multiplication. Any non-zero re-

sultant from an attempted integer multiply indicates overflow.

3-16 60347300 C

41 Round floating product of (Xj) and (Xk) to Xi (15 Bits)

[fm i i o«]
14 9 8 €6 5 3 2 o
This instruction multiplies the floating point number from operand register Xk (multiplicand),

by the floating point number from operand register Xj. The upper product result is packed
in operand register Xi. (No lower product available.) The multiply operation is identical

to that of instruction 40 with the following exception:

Before the left shift of the final product and during the merge operation to form the final
product, a "1" bit is added to bit 248, The following rounded result is the net effect of this
action:

e for products > 295, round is by one-fourth

for all other products, round is by one-half

e when one or both operands are unnormalized, round is by one-fourth.

The result is a normalized quantity only when both operands are normalized; the exponent

in this case is the sum of the exponents plus 47 (or 48).

The result is unnormalized when either or both operands are unnormalized; the exponent in
this case is the sum of the exponents plus 48. For treatment of special operands and/or

indefinite forms, refer to the programming information in volume 1.

42 Floating DP product of (Xj) and (Xk) to Xi (15 Bits)

L [& T3 [«]

4 9 8 6 5 3 2 0

This instruction multiplies two floating point quantities obtained from operand registers Xj
and Xk and packs the lower product in operand register Xi. The two 48-bit coefficients are
multiplied together to form a 96-bit product. The lower-order 48 bits of this product

(bits 47-00) are then packed together with the resulting exponent. The result is not nec-
essarily a normalized quéntity. The exponent of this result is 48 less than the exponent
resulting from a 40 instruction using the same operands. For treatment of special operands

and/or indefinite forms, refer to the programming information in volume 1,

INTEGER MULTIPLY

The 42 code performs short word integer multiplication of 47-bit operands if the 13 upper
bits (exponents) of both operands are sign extended and the operands are not normalized.
The 48 bit result is entered into Xi with sign extension. To ensure a resultant integer of
48 bits or less, the sum of the non-sign bits in the two operands should not exceed 48 bits.

To detect overflow, see the 40 instruction description. Normalized operands cause under-

flow results to be reported.

60347300 E 3=117

44 Floating divide (Xj) by (Xk) to Xi (15 Bits)

L tm L0 T ow]

14 9 8 6 5 3 2 0

This instruction divides two normalized floating point quantities obtained from operand

registers Xj (dividend) and Xk (divisor) and packs the quotient in operand register Xi.

The exponent of the result in a no-overflow case is the difference of the dividend and divisor

exponents minus 48,

A one-bit overflow is compensated for by adjusting the exponent and right shifting the quotient
one place., In this case the exponent is the difference of the dividend and divisor exponents

minus 47.

The result is a normalized quantity when both the dividend and the divisor are normalized.
A divide fault occurs when the coefficient of the dividend is two or more times as large as
the coefficient of the divisor. This forces an indefinite result (17770. .. 0). To avoid this,
normalize both operands before executing this instruction. For treatment of special operands

and/or indefinite forms, refer to the programming information in volume 1.

45 Round floating divide (Xj) by {Xk) to Xi (15 Bits)

Lfm,ij]kj

14 9 8 6 5 3 2 o]

This instruction divides the floating quantity from operand register j (dividend) by the floating
point quantity from operand register Xk (divisor) and packs the round quotient in operand
register Xi. Rounding is accomplished by adding one-third during the division process. In
effect, the quantity ''2525. ... 25258" resides immediately to the right of the dividend binary
point prior to starting the divide operation. On the first iteration, a "1" is added to the least
significant bit of the dividend. After each iteration (subtraction of divisor from partial
dividend) a two-place left shift occurs and a "1" is again added to the least significant bit of
the partial dividend. Thus, successive iterations gradually bring in the one-third round
"quantity' (25. ... 255).

The result exponent in a no-overflow case is the difference of the dividend and divisor

exponents minus 48,

3-18 60347300 C

A one-bit overflow is compensated for by adjusting the exponent and right shifting the
quotient one place; in this case the exponent is the difference of the dividend and divisor
exponents minus 47.

The result is a normalized quantity when both the dividend and the divisor are normalized,
A divide fault occurs when the coefficient of the dividend is two or more times as large as
the coefficient of the divisor. This forces an indefinite result (17770. .. 0). To avoid this,
normalize both operands before executing this instruction. For treatment of special operands

and/or indefinite forms, refer to the programming information in volume 1.

FIXED POINT ARITHMETIC

36 Integer sum of (Xj) and (Xk) to Xi (15 Bits)

I S N

14 9 8 6 5 3 2 0

This instruction forms a 60-bit one's complement sum of the quantities from operand
registers Xj and Xk and stores the result in operand register Xi. An overflow condition

is ignored.

37 Integer difference of (Xj} and (Xk) to Xi /15 Bits)

[w T T 7 T]

14 9 8 6 5 3 2 0

This instruction forms the 60-bit one's complement difference of the quantities from operand
registers Xj (minuend) and Xk (subtrahend) and stores the result in operand register Xi. An

overflow condition is ignored.

47 Count the number of “'I's” in (Xk) to Xi (15 Bits)

L~ [v P77 «]

14 9 8 2 0o

This instruction counts the number of ''1's'" in operand register Xk and stores the count in

the lower order 6 bits of operand register Xi. Bits 6 through 59 are cleared to zero.

60347300 C 3-19

PASS

46 No operation (Pass) (15 Bits)

'L fm),

This is a pass instruction for Model 74 machines. It is also a pass instruction for Models
72 and 73 except for the move and compare instruction codes (464-467) when any of them is
in parcel 0. The example shows a typical use for this code,

EXAMPLE:

59 o]

P 30-BIT INST. IS-8IT INST. PASS

P+1 30-BIT INST. 30-BIT INST.

In this example, a Pass instruction is used to pad the remainder of the word at P. Since

the next instruction is 30 bits, it cannot fit in P and must be placed in P + 1,
MOVE, COMPARE DATA HANDLING (Applicable only to Models 72 and 73)

These instructions must appear in a single instruction word (fmi in bit position 51-59)
or else they will act as pass instructions. The hardware interprets only bit positions

51-59 for the function code in these instructions.

Data fields consisting of 6-bit characters may start or end with any character position
(offset) of the 10 6-bit positions in each word. The character positions are designated as

follows:

15_3111213141516[7[”?

character of the source data field and designator C1 specifies the character position (offset)
of the first character. Designator K2 specifies the storage location in which the first char-
acter of the result data field will be placed and designator C2 specifies the first character

position. For Compare instructions, both data field addresses specify source fields.

EXAMPI.E:
If the instruction were K1=1000 and C1=3, the first character of the source

field is at position 3 of location 1000.

3-20 60347300 D

S

0 1 2 3 4 5 6 7 8 9
1000 [/ /1IN]r [n2 Tes [74 [75 [ve [7]

The first character of the source field is thus 71.

An address is out-of-range if: C1 or C2 is greater than 910, K1+N1 is greater than the
relative address plus the program field length (RA+FL) (N1 = number of memory references
made to the source data field starting at K1), K2+N2 is greater than (RA+FL) (N2 = number

of memory references made to the result data field starting at K2). The address out-of-
range condition is not predicted. When the condition occurs, some unpredictable part of

the operation will be performed. The amount of the operation performed does not necessarily

repeat on an identical out-of-range condition,

L1 is the lower 4 bits and LU the upper 9 bits of the field length designator in numbers of
characters. The maximum length of the data fields for the Move Direct and the Compare
instructions is 177, (12710) characters. The maximum data field length for the Move
Indirect instruction is 177778 (819110) characters. If L (LU and LL combined) is zero, the

instruction becomes a pass.

For overlapping Move instructions, the address of the source field (K1) must be greater
than the address of the result field (K2) to provide proper field overlap. If K1l is less

than K2, part of the source field will be changed during execution, with amount of change
determined by the number of memory conflicts encountered. Overlapping fields should

not contain more than 3778 characters, because an exchange jump interrupts any compare/

move operation having a decremented field length greater than 3778.

464 Move Indirect (60 Bits)
Es to 5'|5_:i “Iﬂ K 3(K9///////////////////////////%0

This instruction moves the source field to the result field as specified by the descriptor.
The quantity Bj + K is the address of the descriptor. Any instructions located in bit positions

0-29 will not be executed.

60~ Bit Descriptor Word

WM Lu Kl]u.[culcz] K2

59 57 56 48 47 3029 26 25 222 18 17

o

The move is from left to right through the field. Register X0 is cleared at the end of

execution.

60347300 F

465 Move Direct (60 Bits)

5150 4847 3029 2625 2221 1817

| =] . 08 N E—

This instruction moves the source field to the result field as specified by the instruction.
The field length is limited to a 7 bit count.

466 Compare Collated - (60 Bits)
L fmi l Ly I K| , LL l Cl l ce l K2]
59 5 50 48 47 3029 2625 222 B 17 0

This instruction compares the field designated by K1, C1 with the field designated by K2,

C2 and sets X0 as follows then terminates:
If (field K1) is greater than (field K2), set X0 to 00 - 0XXX
If (field K1) is equal to (field K2), set X0 to 00 - 000

If (field K1) is less than (field K2), set X0 to 77 - 7YYY where YYY is the ~
complement of XXX

The compare is made left to right through the fields until two unequal characters are found.
These two characters are then collated (looked up in the collating table beginning at address
A0). If the table values found for the two unequal characters is the same, the compare
continues until another pair of characters are unequal or until the field length is exhausted.
If the table values found for the two unequal characters are unequal, X0 is set according to

the rules shown above.-

The value of the three octal numbers XXX, stored in X0 is determined by the equation
L - N = XXX, where L is the length of the field and N is the number of pairs of characters
that were collated equal, prior to instruction termination. In other words XXX is the number

of pairs of characters not yet compared plus one.

3-22 60347300 D

Register A0 contains the starting word address of an 8 word, 64 character, collating table,

This table must have been previously stored in consecutive memory locations.

Address Collating Character lL.ocations

A0 00 | o1{ 02 | 03| 04 |05/ 06 |07 \\\\\\\\\\\\\\
Ao+t 1101 11 12|13 [14 |15 | 16 [17 LI
A0+2 120 | 21] 22 |23 | 24 | 25 | 26 | 27 AN

A0+3 30| 31) 32 |33 34353637 [N
AO+4 140 | 41| 42 | 43 [44 | 45 | 46 | 47 LN

A0+5 |50 | 51) 52 [53 | 54 | 55 | 56 | 57 QLI
A0+6 |60 | 61| 62 | 63 | 64 [65 | 66 | 67 LML
aov7 |70 71| 72 [73 [74 [75 [76 | 77 JLLAN

59 12 11 0

The collated value of a character is found by examining the collating table. The upper three
bits of the character to be collated are added to the contents of register AQ to obtain the
relative address of the word containing the collated value. The lower three bits of the char-

acter to be collated specify the character address of the collated value.

EXAMPLE:

Suppose the character under examination were an octal 63, The 6 would be added to the
contents of register A0 to form the word address and the 3 would be used to pick the correct

character from that word. The value of 63 is 63 in the collating table.

467 Compare Uncollated (60 Bits)
fmi {LU Kl LLci jc2 K2
59 50 47 29 25 21 7 0

This instruction is identical to the Compare Collated instruction with one exception. The
collating table is not used. X0 is set when the first pair of unequal characters is encountered

or when the field length is exhausted.

60347300 D 3-23

INCREMENT _

50 Set Ai to (Af) + K (30 Bits)
51 Set Aito (Bj)+ K (30 Bits)
52 Set Ai to (Xj)+ K . {30 Bits)

[717] «

ol

29 2423 2120 18 |7
53 Set Ai to (Xj) + (Bk) (15 Bits)
54 Set Ai to (Af) + (Bk) (15 Bits)
55 Set Ai to (Aj)— (BK) (15 Bits)
56 Set Ai to (Bj) + (Bk) (15 Bits)
57 Set Ai to (Bj)— (Bk) (15 Bits)
L fm L+ [i T «]
14 9 8 6 5 3 2 o

Phese mstructions perform one's complement addition and subtraction of 18-bit operands
and store an 18-bit result in address register Ai. Overflow, in itself, is ignored, but an

address range fault may result from overflow in this set of instructions.

Operands are obtained from address (A), increment (B), and operand (X) registers as well
as the instruction itself (K = 18-bit signed constant). Operands obtained from an Xj operand

register are the truncated lower 18 bits of the 60-bit word.

Note that an immediate memory reference is performed to the address specified by the final
content ol address registers A1 - A7, The operand read from memory address specified by
AT - Ab is sent to the corresponding operand register X1 - X5. When A6 or A7 is referenced,
the operand from the corresponding X6 or X7 operand register is stored at the address

specified by A6 or AT,

NOTE

If, in this category of instructions, the result placed

in address register Ai is an address out of range, the
following occurs: (Note that this action is independent
of an Exit selection on Address Out of Range.)

If 1= 1-5: Operand register Xi is loaded with the
contents of absclute address zero and the contents
of memory location (Ai) are unchanged.

If i =6 or 7: Operand register Xi retains its original
contents and the contents of memory location (Ai) are
unchanged.

W

-94 60347300 C

EXAMPLE: (For system with 131K central memory)

Initial Quantities
50 SAi = Aj + K i=4 K = 2345678
= -+] = =
SA4 A6 K j=6 A4 3211108
SA4 = 0321008 + 2345678 A6 = 0321008
SA4 = 2666678 X4 - 00..... 008
Storage location 266667 = 7 ... 753421046008
Final Quantities:
A4 = 2666678
A6 = 0321008
X4 =7 ... 753421046008
60 Set Bi to (Aj)+ K (30 Bits)
61 Set Bi to (Bj) + K (30 Bits)
62 Set Bi to (Xj)+ K (30 Bits)
| o i | K
29 24 23 21201817 (]
63 Set Bi to (Xj)+ (Bk) ~ (15 Bits)
64 Set Bi to (Aj) + (Bk) (15 Bits)
65 Set Bi to (Aj)— (Bk) (15 Bits)
66 Set Bi to (Bj)+ (Bk) (15 Bits)
67 Set Bi to (Bj) — (Bk) (15 Bits)

fm[i]j]k]

60347300 C 3-25

These instructions perform one's complement addition and subtraction of 18-bit operands

and store an 18-bit result in increment register Bi. An overflow condition is ignored.

Operands are obtained from address {(A), increment (B), and operand (X) registers as well
as the instruction itself (K = 18-bit signed constant). Operands obtained from an Xj operand
register are the truncated lower 18 bits of the 60-bit word.

70 Set Xi to (Aj)+ K (30 Bits)
71 Set Xi to (Bj)+ K (30 Bits)
72 Set Xi to (Xj)+ K (30 Bits)

Lm [i]il] X |

29 24 23 2120 1817 o
73 Set Xi to (Xj)+ (Bk) (15 Bits)
74 Set Xi to (Aj) + (Bk) (15 Bits)
75 Set Xi to (Aj)— (Bk) (15 Bits)
76 Set Xi to (Bj) + (Bk) (15 Bits)
77 Set Xi to (Bj) — (BK) (15 Bits)

L m T 7 [i]

14 9 8 6 5 3 2

°L

These instructions perform one's complement addition and subtraction of 18-bit operands
and store an 18-bit result into the lower 18 bits of operand register Xi. The sign of the
result is extended to the upper 42 bits of operand register Xi. An overflow condition is

ignored.
Operands are obtained from address (A), increment (B), and operand (X) registers as well

as the instruction itself (K = 18-bit signed constant). Operands obtained from an Xj operand

register are the truncated lower 18 bits of the 60-bit word.

3-26 60347300 C

EXAMPLE:
Initial Quantities:

73 SXi X; + Bk i=2 X 0... 07453214028

2
SX2 X3 + B1 i=3, k=1 X3 =0... 06522243108
SX2 =0... 06522243108 + 5112458 B1 = 5112458
SX2 =7... 77777355558

Final Quantities;

ol
"

9 7... 77777355558

0... 0652224310

oo
0

8

os]
f

5112458

60347300 C

PERIPHERAL PROCESSOR INSTRUCTIONS 4.
\
INSTRUCTION FORMATS

Two formats are used; 12-bit and 24-bit. The 12-bit format has a 6-bit operation code f and
a 6-bit operand or operand address d.

OPERATION OPERAND OR
CODE OPERANDdADDRESS
f
| G l s |
i 6 5 o]

The 24-bit format uses the 12-bit quantity m, the contents of the next program address

(P + 1), with d to form an 18-bit operand or operand address.

OPERATION OPERAND OR OPERAND ADDRESS

CODE ! A —

f m
L s l 6 l 12]

1] o n (o]

| V. I\ /

¥ vV

(P) (P+1)

ADDRESS MODES
Program indexing is accomplished and operands are manipulated in several modes. The

two instruction formats provide for 6-bit or 18-bit operands and 6-bit, 12-bit or 18-bit

addresses.
NO ADDRESS MODE

In this mode d or dm is used as an operand. This mode eliminates the need for storing
constants. The d quantity is considered a 12-bit number, the upper six bits of which are

zero. The dm quantity has d as the upper six bits and m as the lower 12 bits.

60347300 C ‘ 4-1

DIRECT ADDRESS MODE

In this mode, d or m + (d) is used as the address of the operand. The d quantity specifies
one of the first 64 addresses in memory (0000-00778). The m + (d) quantity generates a
12-bit address for referencing all possible peripheral memory locations (0000-77778). If
d # 0, the content of address d is added to m to produce an operand address (indexed ad-

dressing). If d = 0, m is taken as the operand address.

EXAMPLE: Address Modes

Given: d = 25
m = 100
contents of location 25 = 0150
contents of location 150 = 7776
contents of location 250 = 1234
Then:
MODE INSTRUCTION A REGISTER
No Address 14 000025
20 250100
Direct Address 30 000150
50 001234
Indirect Address 40 0077176

INDIRECT ADDRESS MODE

In this mode, d specifies an address which contains the address of the desired operand.
Thus the operand is indirectly obtained., Indirect addressing and indexed addressing require

an additional memory reference beyond that required by direct addressing.

The description of instructions uses the expression (d) to define the contents of memory
location d. An expression with double parentheses ((d)) refers to indirect addressing. The
expression (m + (d)) refers to direct addressing when d = 0 and to indexed direct addressing
when d # 0. Table 4-1 summarizes the addressing modes used for the Peripheral Processor

instructions.

60347300 C

TABLE 4-1. ADDRESSING MODES FOR PERIPHERAL

PROCESSOR INSTRUCTIONS ‘\})
14 ! ?
e E Addregs Mode RVERY
Instruction i] ~7
Type) ire‘cﬁ Indi‘ééct No Addr:ss
Load 30, 50 14, 20
Add 31, 51 41 16, 21
Subtract 32, 52 42 17
S——
Logical Difference 33, 53 43 11,
Store 34, 54 44 //////////////////////

Replace Add

35,

55

45

///////////////////////,

Replace Add One

36,

56

46

//////////////////

Replace Subtract One

37,

57

7
T 7/

. Long Jump

;01 i

m_')

7
////////////////////////////

Return Jump

////////////////////
7

%

\

/////////////////

Unconditional Jump

] .
/////%////////////////////////////////

Zero Jump

)

04

//////////////////// /////////////////////
7

Non-Zero Jump / M//////// 05
Positive Jump i /////////////////////// 06
2/;11;:5 Jump 7/////////////////////// ////////////////// ?;

//

Logical Product

/////////////////////

12, 22

Selective Clear

77

T 77

///////////////////////
/////////////////

13

L.oad Complement

7/

.
2

15

DESCRIPTION OF INSTRUCTIONS

This section describes the Peripheral Processor instructions. Table 4-2 lists designators

used throughout the section.

60347300 C

TABLE 4-2. PERIPHERAL PROCESSOR INSTRUCTION DESIGNATORS

Designator Use
A The A register.
d A 6-bit operand or operand address.
f A 6-bit instruction code.
m A 12-bit quantity used with d to form an 18-bit operand or

operand address.

The Program Address register.
The Q register,

() Contents of a register or location

(0) Refers to indirect addressing.

Preceding the description of each instruction is the octal code, the instruction name and

instruction length.

EXAMPLE:
52 Subtract (m + (d)) (24 Bits)
S e e N—t
Octal Instruction Instruction
Code Name Length

Instruction formats are also given; hashed lines within a format indicate bits which are ndt

used in the operation.

NO OPERATION

00 Pass (12 Bits)
24 Pass (12 Bits)
25 Pass (12 Bits)

l f AN,

H (o]

These instructions specify that no operation be performed, They provide the means for

padding out a program,

60347300 C

BRANCH

01 . Long Jump to m + (d) (24 Bits)

Lt T ¢« T =]

23 18 17 12 1

This instruction jumps to the sequence beginning at the address given by m + (d). If d = 0,
then m is not modified.

02 Return Jump to m + (d) (24 Bits)
L f] , m j
23 18 17 12 1]
(. - I\ _ v J
(P) (P+1)

This instruction jumps to the sequence beginning at the address givenby m + (d), Ifd =0
then m is not modified. The current program address (P) plus two is stored at the jump
address. The new program commences at the jump address plus one. This program should
end with a long jump to, or normal sequencing into, the jump address minus one, which
should in turn contain a long jump, 0100. The latter returns the original program address

plus two to the P register.

03 . Unconditional Jump d (12 Bits)

L ¢ l d]

t 6 5 (¢}

This instruction provides an unconditional jump to any instruction up to 31 steps forward or
backward from the current program address. The value of d is added to the current program
address. If d is positive (01 - 37), then 0001 (+1) - 0037 (+31) is added and the jump is
forward. If d is negative (40 - 76) then 7740 (-31) - 7776 (-1) is added and the jump is
backward. The program stops (a Dead Start is necessary to restart the machine) when

d = 00 or 77.

60347300 C 4-5

04 Zero Jump d (12 Bits)

[1 <]

- H 6 S 0

This instruction provides a conditional jump to any instruction up to 31 steps forward or

backward from the current program address. If the content of the A register is zero, the
jump is taken. If the content of A is non-zero, the next instruction is executed. Negative

zero (777777) is treated as non-zero. For interpretation of d see instruction 03.

05 Non-zero Jump d (12 Bits)

L l ¢]

] 6 s ' o

This instruction provides a conditional jump to any instruction up to 31 steps forward or

backward from the current program address. If the content of the A register is nonzero,
the jump is taken. If A is zero, the next instruction is executed. Negative zero (777777)

is treated as nonzero. For interpretation of d see instruction 03.

06 Plus Jump d (12 Bits)

L ¢ l ¢ |

Ll 6 5 o]

This instruction provides a conditional jump to any instruction up to 31 steps forward or
backward from the current program address. If the content of the A register is positive,
the jump is taken. If A is negative, the next instruction is executed. Positive zero is
treated as a positive quantity; negative zero is treated as a negative quantity. For inter-

pretation of d see instruction 03.

4-6 60347300 C

~—

07 Minus Jump d (72 Bits)

L f l ¢]

B 6 5 o

This instruction provides a conditional jump to any instruction up to 31 steps forward or
backward from the current program address. If the content of the A register is negative,
the jump is taken. If A is positive, the next instruction is executed. Positive zero is
treated as a positive qQuantity; negative zero is treated as a negative quantity. For inter-

pretation of d see instruction 03.

SHIFT

10 Shift d (12 Bits)

f] d B

H 6 5 o]

This instruction shifts the contents of A right or left d places. If d ig positive (00-37) the
shift is left circular; if d is negative (40-77) A is shifted right (end off with no sign extension).
Thus, d = 06 requires a left shift of six places. A right shift of six places results when

d =171,

LOGICAL

11 Logical difference d (12 Bits)

L« [

H 6 5 (o)

This instruction forms in A the bit-by-bit logical difference of d and the lower six bits of A.
This is equivalent to complementing individual bits of A that correspond to bits of d that are
one. The upper 12 bits of A are not altered.

60347300 C 4-7

12 Logical product d (12 Bits)

f | a |

H 6 5 0

This instruction forms the bit-by-bit logical product of d and the lower six bits of the A
register, and leaves this quantity in the lower 6 bits of A. The upper 12 bits of A are zero.

13 Selective clear d (12 Bits)

L« [«]

" 6 35]

This instruction clears any of the lower six bits of the A register where there are corre-
sponding bits of d that are one. The upper 12 bits of A are not altered.

22

Logical product dm (24 Bits)
L f , d m l
23 18 17 12 0
— N /
—V —V
(P) (P+1)

This instruction forms in the A register the bit-by-bit logical product of the contents of A
and the 18-bit quantity dm. The upper six bits of this quantity consist of d and the lower
12 bits are the content of the location following the present program address,

23 Logical ditference dm (24 Bits)
Lt [¢« T ']
23 18 17 12 i o
“— N]
~V v
(P) (P+1)

This instruction forms in A the bit-by-bit logical difference of the contents of A and the

18-bit quantity dm. This is equivalent to complementing individual bits of A which corre-

spond to bits of dm that are one. The upper six bits of the quantity consist of d, and the

lower 12 bits are the content of the location following the present program address.

60347300 C

33 Logical difference (d) (12 Bits)

43 Logical difference ((d) (12 Bits)

L« T]

" 6 5 (o]

This instruction forms in A the bit-b

y-bit logical difference of the lower 12
12-bit operand obtained by indirect a

ddre
word obtained ig used as the operand add

bits of A and the
$sing. Location d ig read out of memory, and the

ress. The upper six bits of A are not altered,
53

Logical difference (m + (d)) (24 Bits)

23 1817 12 1
— I
(P) (P+1)
This instruction forms in A the bit

DATA TRANSMISSION

14 (12 Bits)

1T

H 6 5

This instruction clears the A register and loads it with d. The upper 12 bits of A are zero,

60347300 C

15 Load complement d (12 Bits)

L l ¢ |

" 6 5 o}

This instruction clears the A register and loads the complement of d. The upper 12 bits of

A are set to one.

20 Load dm (24 Bits)
Lt [¢] m |
23 18 17 12 it o]
. /\ J
v ¥
(P (P+1)

This instruction clears the A register and loads an 18-bit quantity consisting of d as the
higher six bits and m as the lower 12 bits. The contents of the location following the present

program address are read out to provide m.

30 Load (d) (12 Bits)

L l ¢ |

] 6 5 (o]

This instruction clears the A register and loads the contents of location d. The upper six

bits of A are zero.

34 . Store (d) (12 Bits)

(f d
N 6 5 (o]

This instruction stores the lower 12 bits of A in location d.

4-10 ' 60347300 C

40 Load ((d)) (12 Bits)

T]

i 6 5 (o]

This instruction clears the A register and loads a 12-bit quantity that is obtzined by indirect
addressing. The upper six bits of A are zero. Location d is read out of memory, and the

word obtained is used as the operand address.

44 Store ((d)) (12 Bits)

L ¢ | ¢ |

I 6 5 (o]

This instruction stores the lower 12 bits of A in the location specified by the contents of

location d.

50 Load (m + (d)) (24 Bits)

- fldlmj

23 1817 12 1t o
— I /
Vv Vv
(P) (P+1)

This instruction clears the A register and loads a 12-bit quantity. The upper six bits of A
are zero. The 12-bit operand is obtained by indexed direct addressing. The quantity "m"’,
‘read out of memory location P + 1 serves as the base operand address to which (d) is added.
If d = 0, the operand address is m, but if d # 0, then m + (d) is the operand address. Thus

may location d be used for an index quantity to modify operand addresses.

54 Store (m + (d)) (24 Bits)

Lt [¢« T @]

23 1817 12 1 0o

I /
\4 4

(P} (P+1)
This instruction stores the lower 12 bits of A in the location determined by indexed address-

ing (see instruction 50).

60347300 C 4-11

ARITHMETIC

16 Add d (12 Bits)

T <]

1 6 S (o)

This instruction adds d (treated as a 6-bit positive quantity) to the contents of the A register.

17 Subtract d (12 Bits)

L d J

1 6 S o

This instruction subtracts d (treated as a 6-bit positive quantity) from the contents of the
A register,

21 Add dm (24 Bits)

R

L [¢] m___

23 1. 12 11)

— —V J
(P) (P+1)

This instruction adds to the A register the 18-bit quantity consisting of d as the higher six

bits and m as the lower 12 bits. The contents of the location following the present program
address are read out to provide m.

31 Add (d) (12 Bits)

L« [<]

i 6 5 0

This instruction adds to the A register the contents of location d (treated as a 12-bit positive
quantity).

60347300 C

32 Subtract (d) (12 Bits)

L« T]

| 6 S 0

This instruction subtracts from the A register the contents of location d (tre

ated as a 12-bit
positive quantity).

41 Add ((d)) (12 Bits)

L ¢ l d]

1 6 5 o

This instruction adds to the contents of A a 12-bit operand (treated as a positive quantity)
obtained by indirect addressing. Location d is read out of memory,

and the word obtained
is used as the operand address.

42 Subtract ((d)) (12 Bits)

L I ¢«]

H 6 S o]

This instruction subtracts from the A register a 12-bit operand (treated as a positive
quantity) obtained by indirect addressing. Location d is read out of memory,

and the word
obtained is used as the operand address.

51 Add (m + (d)) (24 Bits)

23 18 17 12 11
-— YA
—V —V
(P) (P+1)
This instruction adds to the contents of A a 12-bit operand

Lt [« T W 7]

(treated as a positive quantity)
obtained by indexed direct addressing (see instruction 50).

60347300 C

52 Subtract (m + (d)) (24 Bits)

23 18 17 12 1t

v v
(P) (P +1)

. ©

This instruction subtracts from the A register a 12-bit operand (treated as a positive

quantity) obtained by indexed direct addressing (see instruction 50).

CENTRAL PROCESSOR AND CENTRAL MEMORY COMMUNICATIONS

260 Exchange Jump (12 Bits)

| f | V) |« touaL cp BiT)

I 6 5 3 2 10.

This instruction transmits an 18-bit (absolute) address (only 17 bits are used) from the

A register to the Central Processor with a signal which tells the Central Processor to
perform an Exchange Jump, with the address in A as the starting location of a file of 16
words containing information about the Central Processor program to be executed. The
18-bit initial address must be entered in A before this instruction is executed. The Central
Processor replaces the file with similar information from the interrupted Central Processor
program. The Peripheral Processor is not interrupted. In systems with dual Central
Processors the lowest order bit specifies which Central Processor the Exchange Jump will

interrupt.

261 Monitor Exchange Jump (12 Bits)

F l B 3E/////]c—(oum. CP BIT)

")
I This instruction is enabled or disabled by the panel CEJ/MEJ switch. When the switch is at

the ENABLE position, the instruction causes a conditional exchange jump to the Central

Processor. If the Monitor Flag bit is clear, this instruction sets the flag and initiates the
I exchange. If the Monitor Flag bit i}n either CPU is set, this instruction acts as a Pass
instruction. The starting address for this exchange is the 18-bit address held in the
Peripheral Processor A register. (The Peripheral Processor program must have loaded
A with an appropriate address prior to executing this instruction.) Note that this starting
address is an absolute address. This instruction is either 2610 (CPU-0) or 2611 (CPU-1).

I If the CEJ/MEJ switch is at DISABLE position, it performs as a 260 instruction.
4-14 60347300 D

262 Monitor Exchange Jump to MA {12 Bits)

F | P 3[g///// . «——(DUAL CP BIT)

" 0

This instruction is enabled or disabled by a panel switch labeled CEJ/MEJ. If the switch is

at ENABLE position, this instruction is a conditional exchange jump of the Central Processor,
If the monitor flag bit is clear, this instruction sets the flag and initiates the exchange. Ifi

the monitor flag in either CPU is set, this instruction acts as a Pass instruction. The start- I
ing address for this exchange jump is the 18-bit address held in the MA register. Note

that this starting address is an absolute address. If the CEJ/MEJ switch is at DISABLE, |

it performs as a 260 instruction.

27 Read program address (12 Bits)

vz

" DuAL Cp BIT)

This instruction transfers the content of the Central Processor Program Address register,
P, to the Peripheral Processor A register; this allows the Peripheral Processor to deter-
mine whether or not the Central Processor is running. In systems with dual central
processors, the lowest order bit of the instruction format specifies which central processor
P register is to be examined, The largest value that (P) may be is 17 bits. The remaining
bit (bit 17) will appear set to this instruction when an ECS transfer is in progress. However,

bit 17 is not set in P.

60 Central read from (A) to d (12 Bits)

L+ e

i 6 5 0

This instruction transfers a 60-bit word from Central Memory to five consecutive locations
in the processor memory. The 18-bit address of the Central Memory location must be
loaded into A prior to executing this instruction. (Note that this is an absolute address.)
The 60-bit word is disassembled into five 12-bit words beginning at the left, Location d
receives the first 12-bit word. The remaining 12-bit words go to succeeding locations,
This instruction will not interrupt an ECS transfer unless bit 17 of the A register is

set (Access priority).

60347300 D 4-15

61 Central read (d) words from (A)tom {24 Bits)

Lt [¢« T "]

23 1817 12 i 0
— I /
—V v

(P) (P+1)

This instruction reads a block of 60-bit words from Central Memory. The content of
location d gives the block length. The 18-bit address of the first central word must be
loaded into A prior to executing this instruction. (Note that this is an absolute address.)
During the execution of the instruction, (P) goes to processor address 0 and P holds m.
Also, (d) goes to the Q register where it is reduced by one as each central word is pro-
cessed. The original content of P is restored at the end of the instruction.

Each central word is disassembled into five 12-bit words beginning with the high-order

12 bits. The first word is stored at processor memory location m. The content of P (which
is holding m) is advanced by one to provide the next address in the processor memory as
cach 12-bit word is stored. If P overflows, operation continues as P is advanced from

77778 to 00008. These locations will be written into as if they were consecutive.

The content of A is advanced by one to provide the next Central Memory address after each
60-bit word is disassembled and stored. Also, the contents of the Q register are reduced
by one. The block transfer is complete when Q = 0. The block of Central Memory locations
goes from address (A) to address (A) + (d) -1. The block of processor memory locations
goes from address m to m + 5(d) -1. This instruction will not inturrupt an ECS transfer

unless bit 17 of the A register is set (Access priority).

62 Central write to (A) from d (12 Bits)

7 T <]
I 6 5 [0}
This instruction assembles five successive 12-bit words into a 60-bit word and stores the

word in Central Memory. The 18-bit address word designating the Central Memory location

must be in A prior to execution of the instruction. (Note that this is an absolute address.)

Location d holds the first word to be read out of the processor memory. This word appears
as the higher order 12 bits of the 60-bit word to be stored in Central Memory. The remain-
ing words are taken from successive addresses. This instruction will not interrupt an

ECS transfer unless bit 17 of the A register is set (Access priority).

4-16 60347300 C

63 Central write (d) words to (A) from m (24 Bits)

This instruction assembles a block of 60-bit words and writes them in Central Memory. The
content of location d gives the number of 60-bit words. The content of the A register gives
the beginning Central Memory address. (Note that this is an absolute address.) During the
execution of this instruction (P) goes to processor address 0 and P holds m, Also, {d) goes
to the Q register, where it is reduced by one as each central word is assembled. The

original content of P is restored at the end of the instruction.

first 60-bit word to be stored in Central Memory.

The content of P ig advanced by one to provide the next address in the processor memory as
each 12-bit word is read. If P overflows, operation continues as P is advanced from
77778 to 00008. These locations will be read from as if they were consecutive.

The content of A is advanced by one to provide the next Central Memory address after each
60-bit word is assembled and Q is reduced by one, The block transfer is complete when

Q = 0, This instruction will not interrupt an ECS transfer unless bit 17 of the A register
is set (Access priority),

REPLACE

35 Replace add (d) (12 Bits)

L« ¢]

H 6 5 o]

This instruction adds the quantity in location d to the contents of A and stores the lower
12 bits of the resuit at location d. The resultant sum is left in A at the end of the operation
and the original contents of A are destroyed,

60347300 C 4-17

36 Replace add one (d) (12 Bits)

L f I ¢]

7] 6 5 o

The quantity in location d is replaced by its original value plus one.

The resultant sum is
left in A at the end of the operation,

and the original contents of A are destroyed,

37 Replace subtract one (d) -~ (12 Bits)

L l d]

1 6 5 o

The quantity in location d is replaced by its original value minus one,

The resultant
difference is left in A at the end of the operation,

and the original contents of A are destroyed.

45 Replace add ((d)) (12 Bits)

L ¢ l ¢]

H 6 5 o]

The operand which is obtained from the location specified by the contents of location d

s 18
added to the contents of A, and the lower 12 bits of the sum replace the original operand.
The resultant sum is also left in A at the end of the operation.

46 Replace add one ((d)) (12 Bits)

L f l d]

2] 6 5 (o]

The operand, which is obtained from the location specified by the contents of location d
replaced by its original value plus one.
operation,

, 1is
The resultant sum is also left in A at the end of the
and the original contents of A are destroyed,

60347300 C

47 Replace subtract one ((d)) (12 Bits)

I]

A 6 5 (o)

The operand, which is obtained from the location specified by the contents of location d, iz
replaced by its original value minus one. The resultant difference is also left in A at the

end of the operation, and the original contents of A are destroyed,

55 Replace add (m + (d)) (24 Bits)
N .
23 18 17 12 11 0
J_. /
' Y
(P) (P+1)

The operand, which is obtained from the location determined by indexed direct addressing,
is added to the contents of A, and the lower 12 bits of the sum replace the original operand

in memory. The resultant sum is also left in A at the end of the operation, and the original

contents of A are destroyed.

56 Replace add one (m + (d)) (24 Bits)
Lt] o] m]
23 18 17 12 1 0
- —y J_ v /
(P} (P+1)

The operand, which is obtained from the location determined by indexed direct addressing,
is replaced by its original value plus one (see instruction 50, for explanation of addressing).

The resultant sum is also left in A at the end of the operation, and the original contents of

A are destroyed.

60347300 C 4-19

57 Replace subtract one (m + (d)) (24 Bits)

[¢ | ¢ | m |

23 18 17 12 1) 0

AV os J\. Y J
(P) (P+1)

‘The operand, which is obtained from the location determined by indexed direct addressing,
is replaced by its original value minus one (see instruction 50 for explanation of addressing).
The resultant difference is also left in A at the end of the operation, and the original contents

of A are destroyed.

INPUT/OUTPUT
64 Jump to m if channel d active (24 Bits)
Lt | ¢ | m]
23 i8 17 12 11 (o)
\ I\ /
V V
(P) (P+1)

This instruction provides a conditional jump to a new program sequence beginning at an
address given by the contents of m. The jump is taken if the channel specified by d is active.

The current program sequence continues if the channel is inactive.

65 Jump to m if channel d inactive (24 Bits)’

L+ [¢ | = |

23 18 17 12 1 o]
\ /\ /

\ \4
(P) (P+1)

This instruction provides a conditional jump to a new program sequence beginning at an
address given by m. The jump is taken if the channel specified by d is inactive. The

current program sequence continues if the channel is active.

4-20 60347300 C

66 Jump to m if channel d full (24 Bits)

Lt [¢« [m]

23 . i8 17 12 H

. /\
-V v
(e} (P+1)

This instruction provides a conditional jump to a new program sequence beginning at an
address given by m. The jump is taken if the channel designated by d is full. The present
program sequence continues if the channel is empty. '

An input channel is full when the input equipment has placed a word on the channel and that
word has not yet been sampled by a processor. The channel is empty when a word has been
accepted. An output channel is full when a processor places a word on the channel. The

channel is empty when the output equipment has sampled the word.

67 Jump to m if channel d empty (24 Bits)
Lt [o] m J
23 1817 12 1 (o}
v N J
\ v
(P} (P+1i)

This instruction provides a conditional jump to a new program sequence beginning at an
address specified by m. The jump is taken if the channel specified by d is empty. The
current program sequence continues if the channel is full. (See instruction 66 for the

meaning of full and empty.)

70 Input to A from channel d (12 Bits)

[¢ d |

1 6 5 (o]

This instruction transfers a word from activated input channel d to the lower 12 bits of the
A register. The upper 6 bits of the A register are cleared to zeros. If bit 5 of the instruc-
tion is clear, an inactive channel causes a PPU to hang up, but if bit 5 is set, an inactive
channel causes the PPU to perform an exit leaving the A register cleared. It is possible to
unhang a PPU by deactivating the appropriate channel.

60347300 F 4-21

71 Input (A) words to m from channel d ‘ (24 Bits)

Lt | ¢ | m |
23 18 17 12 i 0
J

\ J\
A\ Vv

(P) (P +i)

This instruction transfers a block of 12-bit words from input channel d to the processor
memory. The content of A gives the block length. The first word goes to the processor
address specified by m. The content of A is reduced by one as each word is read. The
input operation is complete when A = 0 or the data channel becomes inactive., If the opera-
tion is terminated by the channel becoming inactive, the next location in the processor
memory is set to all zeroes. However, the word count is not affected by this empty word.
Therefore, the contents of the A register gives the block length minus the number of real

data words actually read in.

During this instruction address 0000 temporarily holds P, while m is held in the P register.
The content of P advances by one to give the address for the next word as each word is stored.

NOTE

If this instruction is executed when the data channel is
inactive, no input operation is accomplished and the
program continues at P + 2, However, the location
specified by m is set to all zeroes.

72 Output from A on channel d (12 Bits)

L ¢ I d |

tl 6 5 o]

This instruction transfers a word from A (lower 12 bits) to activated output channel d. If
bit 5 is clear, an inactive channel causes a PPU to hang up, but if bit 5 is set, an inactive
channel causes the PPU to perform an exit. It is possible to unhang a PPU by deactivating
the appropriate channel. The inactive channel causes this instruction to act as a two major

cycle pass.

4-22 60347300 F

73 Output (A) words from m on channel d (24 Bits)

[¢ [" |
23 I8 17 12 11 0
—

Vv v
(P) (P+1)

This instruction transfers a block of words from the processor memory to channel d. Th=
first word comes from the address specified by m. The content of A specifies the numbe:>
of words to be sent. The content of A is reduced by one as each word is read out. The

output operation is complete when A = 0 or the channel becomes inactive.

During this instruction address 0000 temporarily holds P, while m is held in the P register,
The content of P advances by one to give the address of the next word as each word is taken

from memory.

NOTE

If this instruction is executed when the data channel is
inactive, no output operation is accomplished and the
program continues at P + 2,

74 Activate channel d (12 Bits)

l f l d]

H 6 5 (o]

This instruction activates the channel specified by d and must precede any 70-73 instruction.
Activating a channel alerts and prepares the I/O equipment for the exchange of data.

NOTE

Activating an already active channel causes the periph-
eral processor to hang up.

60347300 C . 4-23

75 Disconnect channel d (12 Bits)

l f l d

il 6 5 0

This instruction deactivates the channel specified by d. As a result, the I/O equipment stops
and the buffer terminates.

NOTE

1) Do not attempt to deactivate an already inactive
channel or the peripheral processor will hang up.

2) If an output instruction is followed by a disconnect
instruction without first establishing that the in-
formation has been accepted by the input device
{check for channel empty) the last word transmitted
may be lost.

3) Do not deactivate a channel before putting a useful
program in the associated processor. Processors
other than 0 are hung up on an Input instruction
(71). Deactivating a channel after Dead Start causes
an exit to the address specified by the contents of
location 0000 plus 1 and execution of that program.
If the channel is deactivated without a valid program
in that processor, the processor will execute what
ever program was left in memory; it could, there-
fore, run wild.

76 Function (A) on channel d (12 Bits)

l f | a

] 6 8 o

The external function code in the lower 12 bits of A is sent out on channel d. If bit 5 is
clear, an active channel will cause the PPU to hang up, but if bit 5 is set, the active channel

remains active and the PPU performs an exit,

77 Function m on channel d (24 Bits)

Lt [o] m]

23 18 17 12 1t o]

The external function code specified by m is sent out on channel d. If bit 17 is set, an
active channel causes the PPU to perform an exit with the channel remaining active.

4-24 60347300 F

CONSOLE PROGRAMMING

INPUT FROM KEYBOARD

The PPU must transmit a2 one word function code (70208) to input data from the keyboard.
The code prepares the controller for an input operation. The PPU then checks for an
Activ: input channel and inputs one character from the keyboard, This character is
entered as the lower 6 bits of the word. The upper bits are cleared. There is no status
report by the keyboard. If console power is off, a 00 code (no console) will be returned
to the PPU., Table 4-3 lists the keyboard character codes.

TABLE 4-3, KEYBOARD CHARACTER CODES

Character Code Character Code Character Code
No Console 00 P 20 5 40
A 01 Q 21 6 41
B 02 R 22 7 42
C 03 S 23 8 43
D 04 T 24 9 44
E 05 U 25 + 45
F 06 \ 26 - 46
G 07 w 27 * 47
H 10 X 30 / 50
I 11 Y 31 (51
J 12 Z 32) 52
K 13 0 33 Space 53
L 14 1 34 = 54
M 15 2 35 Space 55
N 16 3 36 s 56
o 17 4 37 . 57
Carriage
Return 60
Backspace 61
Space 62

60347300 D 4-25 |

OUTPUT TO CONSOLE DISPLAY

Data is displayed within a 10 square inch area (raster) on two screens (CRT's). The displays
can be alphanumeric (Character mode) or graphic (Dot mode). There are 262, 144 dot loca-
tions arranged in a 512 by 512 format. Each dot position is determined by the intersection

of X and Y coordinates. The lower left corner dot is address 000 000 and the upper right
corner dot is address 777 777.

Two independent presentations can be simultaneously displayed because of the persistence of
the displays. The controller must be selected each time an output is changed from one
display to the other. The presentations need be generated only 25 times a second to pre-

sent a nonflickering display,
CHARACTER MODE

Three character sizes are provided. Large characters are arranged in a 32 by 32 dot for-
mat with 16 characters per line. Medium characters are arranged in a 16 by 16 dotfor-
mat with 32 characters per line. Small characters are arranged in an 8 by 8 dot format
with 64 characters per line. Table 4-4 lists the character codes.

TABLE 4-4, DISPLAY CHARACTER CODES
Character Code Character Code Character Code

Space 00 P 20 5 40
A 01 Q 21 6 41
B 02 R 22 7 42
C 03 S 23 8 43
D 04 T 24 9 44
E 05 8] 25 + 45
F 06 \Y% 26 - 46
G 07 A\ 27 * 47
H 10 X 30 / 50
I 11 Y 31 (51
J 12 Z 32) 52
K 13 0 33 Space 53
L 14 1 34 = 54
M 15 2 35 Space 55
N 16 3 36 s 56
O 17 4 37 . 57 ~—

4-26 60347300 D

DOT r10ODE

A display dot is generated for each position selected by X and Y coordinates, Horizontal
lines can be generated by a single X coordinate followed by successive Y coordinates and
vertical lines can be generated by a single Y coordinate followed by successive X coordinat 's. 8

CODES

A single function word is transmitted to select the screen, the mode, and character size
(character mode only). Figure 4-1 illustrates the function word format. The word follow-
ing the function word specifies the starting coordinates for the display (for either mode).
Figure 4-2 illustrates coordinate carrying word. In character mode the following words
are display character codes. Figure 4-3 illustrates the character word.

L l | | 70\

11 1 9 8] 6 5 3 2
78 = Output Function

08 = Small chararters

18 = Medium
characters

28 Large charzcters

0g = Left screen 0o = Character mode
18 = Right screen 18 = Dot mode

Figure 4-1, Console Output Function Code

L l l

11 9 8 I 0
\68 X Coordinate
Y

78 Address

Figure 4-2, Coordinate Data Word

l]]

11 I 6 5] 0

First character Second character

Figure 4-3. Character Data Word

60347300 D 4-27

When the display operation has been started, the controller regulates character spacing

on the line. A new coordinate data word must be sent to start each line. If new coordinates
are not specified, the following data will be written on the line specified by the active coor-
dinate word and information already on that line will be wiped out. Character sizes can be
mixed by sending a new function word and coordinate word for each size change., Spacing
on a line can be varied by sending a coordinate word for the character which is to be spaced

differently.

TIMING

A one usec pause must be allowed between the disconnect of a channel after an output and
the execution of an input function, This time is the same as that of the 00 pass instruction

(see example below).

74d Activate channel d

73d Output (A) words

75d Disconnect channel d

00 Pass

77d Function on channel d

7020 Select Keyboard Input

74d Activate channel d -
70d Input to A from channel d

75d Disconnect channel d

[4-28 60347300 D

PRO 5RAMMING EXAMPLE

The following program requests an input of one line of data from the console and displays
this data on the console's left CRT as it is being typed in. ¥igure 4-4 is the flow chart { »

this program.
\ START /

INPUT ONE
DATA WORD

U

YES

STORE DATA

ASSEMBLE DATA
IN CHARACTER
MODE FORMAT

OUTPUT ASSEMBLED
DATA PLUS e

INITIAL. COORDINATES

HAS THE DISPLAY
LINE BEEN FILILED?

S

CONTINUE YES
DISPLAY? ot

END

Figure 4-4. Receive and Display Program Flow Chart

60347300 D

START

LOOP

ADVANCE
GENERATE

NEXT

DISPLAY

MESSAGE
OouTPUT
INPUT

DELTA
ECHO
FOX
MEMORY
CHANNEL

§ 4-30

LDN
STD

AJM
FNC

ACN

DCN
ZJN
STM
LMN
NJN
STM

AOD

LDN
STD

STD

LDM
SHN
STD
AOD
LDM
ADD
STM
LDD
SBN
ZJN
AOD
AOD
LJM

AJM
FNC

LDN
ACN
OAM
DCN
LJM

CON
BSS

BSS
ORG

EQU

00
DELTA

LOOP, CHANNEL
7020B, CHANNEL

CHANNEL
CHANNEL
CHANNEL
GENERATE
INPUT, DELTA
62B

ADVANCE
INPUT, DELTA

DELTA

00
ECHO

FOX

INPUT, ECHO
6

MEMORY
ECHO
INPUT, ECHO
MEMORY
OUTPUT, FOX
FOX

16

DISPLAY
FOX

ECHO

NEXT

DISPLAY, CHANNEL

7001B, CHANNEL

18
CHANNEL

MESSAGE, CHANNEL

CHANNEL
LOOP

6000B, 7757B
16
32

11

Set input address incrementer to zero

Test for channel inactive
Select console 0, keyboard input

Activate channel

Input one word
Disconnect channel

Exit on No Data

Store data word

Sense Space

Exit on Space

Store character code = 00

Advance input address incrementer

Set message address incrementer
to zero
Set output address incrementer to zero

Looad first character

Left Shift six

Store temporarily

Advance message address incrementer
Load second character

Assemble output word

Store output word

Exit on a full line

Advance output address incrementer
Advance message address incrementer
Exit to assemble next output word

Test for channel inactive

Select console 0, left CRT, medium
character

Word count plus two

Activate channel

Output message

Disconnect channel

Jump to beginning

Initial coordinates, upper left corner
Output addresses

Input address

Input address incrementer
Message address incrementer
Output address incrementer
Temporary storage

Define Data Channel

60347300 D

